Physics 4261: Homework 2

Prof. Colin V. Parker (cparker@gatech.edu) Georgia Institute of Technology

2.1. Foot 2.2 (CP Note: Do not worry about the normalization constant in front, unless you want)

2.2. Foot 2.4

2.3. Angular momentum commutators Take the spherical coordinate operators

$$\hat{l}_x = i\hbar \cot\theta \cos\phi \frac{\partial}{\partial\phi} + i\hbar \sin\phi \frac{\partial}{\partial\theta},$$
$$\hat{l}_y = i\hbar \cot\theta \sin\phi \frac{\partial}{\partial\phi} - i\hbar \cos\phi \frac{\partial}{\partial\theta},$$
$$\hat{l}_z = -i\hbar \frac{\partial}{\partial\phi}.$$

- (a) Verify that $[\hat{l}_x, \hat{l}_y] = i\hbar \hat{l}_z$ (we did the other permutations in class).
- (b) Use the cyclic permutations to show that $\hat{\mathbf{l}}^2$ commutes with any particular \hat{l} operator.
- (c) Show that $[\hat{l}_z, \hat{l}_{\pm}] = \pm \hbar \hat{l}_{\pm}$.
- (d) (Bonus Q) Verify that \hat{l}^2 takes the same form as derived from separation of variables.