
Physics 4261: Homework 5 (due Feb. 20, 2017)

Prof. Colin V. Parker (cparker@gatech.edu)
Georgia Institute of Technology

5.1. Matrix formulation of angular momentum addition

This problem will give some math behind the perturbation theory results we have been
using so far. Consider a system of spin one-half operators ŝ1, ŝ2, and ŝ3. Consider also
the Hamiltonian

Ĥ = αŝ1 · ŝ2 + βŝ2 · ŝ3.

(a) Use the basis spanned by the vectors |↑↑↑⟩ , |↑↑↓⟩ , |↑↓↑⟩ , |↓↑↑⟩ , |↓↓↑⟩ , |↓↑↓⟩ ,
|↑↓↓⟩ , and |↓↓↓⟩ . Write out the 8 × 8 Hamiltonian matrix. Remember how to
turn the dot product into a sum of z operators and raising/lowering operators.
Show that it is block-diagonal in groups of 1× 1 and 3× 3 matrices.

(b) Write out one of the 1 × 1 matrices. What is it’s eigenvalue. Yes, this is easy.
Note that the answer is linear in α and β.

(c) Write out one of the 3 × 3 matrices explicitly (they should be the same so
whichever). Find it’s spectrum (this means the eigenvalues). The sub-problems
below help you to do this, but use whatever method you like.

i. From part 5.1b we know what one of the eigenvalues must be. This is be-
cause the eigenvalue form part 5.1b corresponds to a state with Jtotal = 3/2.
Therefore, this eigenvalue must occur in the spectrum of our 3 × 3 ma-
trix as well, since it must have components with total z momentum at
3/2, 1/2,−1/2, and3/2.

ii. Write out the characteristic polynomial for the 3 × 3 matrix. Use sums of
powers of (α + β) and (α − β) for the coefficients. Or don’t, and it will be
harder. Your choice.

iii. Since you know one of the factors, factor the characteristic polynomial down
to a quadratic equation and use the quadratic formula.

(d) Assume α ≫ β. Find the first order Taylor expansion in terms of the small
quantity β/α (i.e. generate a power series and keep terms of order α and β, but
not β2/α).

(e) Now, we can do this whole process much more easily! Show that the eigenvalues
of the Hamiltonian Ĥ0 = αŝ1 · ŝ2 are α/4 and −3α/4. You will define the operator
Ĵ12 = ŝ1 + ŝ2.
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(f) As argued in class, the only term which is rotationally invariant, and commutes
with Ĥ0, is Ĥ ′

C = Ĵ12 · ŝ3. Find the eigenvalues of this matrix for the case α/4
(the other case has Ĵ12 = 0)

(g) The first order spectrum can be determined now, if we know the prefactor for
Ĥ ′

C . Use this to find the first order approximation to the spectrum. Show that it
matches your Taylor expansion.

(h) Now let ŝ1 be a spin-one operator instead. Find the spectrum with the same
Hamiltonian to first order in β. Wasn’t that easy? Imagine having to write out
all the matrices. Yuck!

5.2. Breit-Rabi Formula

We are going to continue our work from class and derive a complete formula for the
energies of a ground state alkali atom J = S = 1/2 with nuclear spin I. Recall that
the Hamiltonian is (assuming a vertical field)

Ĥ = gsµBBĴz − gIµNBÎz + AHFÎ · Ĵ.

(a) Expand out the dot product Î · Ĵ into a sum of over x, y and z, and then convert
the answer to raising and lowering operators.

(b) Write a two by two matrix for the Hamiltonian in the basis of states with total pro-
jected spinmF . (Hint: the two allowed states are |I,mI , J,mJ⟩ = |I,mF − 1/2, 1/2, 1/2⟩
and |I,mF + 1/2, 1/2,−1/2⟩ .) Show that the answer can be written in the form:(

c1 + c2 c3
c3 c1 − c2

)
,

and find the values c1, c2, and c3.

(c) Diagonalize the matrix to find the eigenvalues.

(d) Consider the limiting case that B = 0. Does the result agree with the interval
rule? Does the result depend on mF ? Why or why not?

(e) Consider the case of small B, perform a Taylor expansion around B = 0 to
obtain the first non-zero correction. How does the result depend on mF (linear,
quadratic, etc.)? Compare to the perturbation theory result from class.

(f) Consider the contrary limit that AHF = 0.

(g) Expand for small values of AHF to obtain the first non-zero correction. Does the
correction depend on B? Why or why not? (Again, compare to the perturbation
theory result form class).
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