
Physics 4261: Lectures for week 1

Prof. Colin V. Parker (cparker@gatech.edu)
Georgia Institute of Technology

1.1 Introduction: atoms
The topic of the course is “atomic physics” and hence the fundamental unit we study will be the
atom. Themost common question I get when I tell people I study atomic physics (aside from people
who confuse the terms “atomic” and “nuclear”), is “don’t atoms make up everything?” And, in a
way, they do. But atoms, as we will study them in this course, are actually pretty rare, at least on
earth (they may be more common in astrophysics). The reason is that we want to consider atoms in
isolation. Atoms in solids and liquids are very close to together, and their behavior is very different
from isolated atoms, hence the need for condensed matter physics. Even in the gas phase, the most
common gases (O2, N2) are actually molecules, and not atoms. So what we are going to study
is in fact something of a rarity, which occurs most commonly in vapor cells built especially for
the purpose. Nonetheless, we will see that, compared to our colleagues who study more practical
things, we can describe atoms using relatively simple models and capture the physics with shocking
accuracy. For example, atomic clocks are at 18 digits these days.

1.2 Atomic physics today
To give a little perspective, and to motivate our studies, I will outline what I see as the th main areas
in atomic physics today:

• “Quantum Simulation” This is my own area of research and consists of trying to arrange
atoms in such a way as to simulate other quantum systems, typically condensed matter sys-
tems, but also nulcear or astrophysical systems. This is motivated by the observation (by
Feynman) that only a quantum mechanical system (as atoms are) can efficiently model an-
other quantum system.

• “Quantum Information” A related idea, seeking instead to harness the quantum behavior
of atoms for general purpose computing (i.e. factoring large primes), or encrypting data for
storage and communication.

• “Precision Measurement” This includes atomic clocks, and efforts to measure symmetry
breaking, or weak effects like gravity. Many theories predict symmetry breaking involving
high energy particles (e.g. electroweak theory). These effects should show up either at high
energy, in collider experiments (as many have), or as very weak effects in atoms. However,
considering the huge cost of colliders, and the years of measuring needed to get even a few
digits, precision atomic measurements are an exciting and complementary alternative.
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• “Basic Atomic Properties”Most of the basic properties of common atoms have been mea-
sured to extraordinary precision already, but there are some properties still to be measured,
like rare isotope masses, isotopic ratios, and hyperfine structure.

1.3 Pre-Schrödinger equation atomic physics
Just to give brief context, as this is not a quantum mechanics or history of quantum mechanics
course.

• Ultraviolet catastrophe From statistical mechanics, we expect kBT of energy per radiation
mode. But there are infinitely many modes going to higher and higher frequency. Planck
corrected this by relating the frequency to the energy with the constant h = 2π ∗ ℏ, and
considering discrete quanta of light we now call “photons”. He arrived at the formula for the
density of states

ρ(ω) =
ℏω3

π2c2
1

eℏω/kBT − 1
.

• Photoelectric effect Classically, one expects a stronger light source to produce a higher elec-
trical field at a metal surface, and to therefore rip off more electrons and make them go faster.
However, only the number of electrons depends on intensity, the emitted kinetic energy T is
given by

T = hν − ϕ,

where h is Planck’s constant from above and ν is the frequency of the light, ϕ is the work
function (depends on the metal chosen), below which no emission occurs.

• Rutherford scatteringWhen energetic, charged α particles are incident on gold foil, most of
the atoms passed straight through or had a small deflection. This is expected if the charge is
in small clumps (the nuclei), but not if the charge is spread out (somewhat hilariously called
“plum pudding”).

• Atomic emissionWhen atom vapor is heated, it emits light not over a continuous spectrum,
but instead at discrete frequencies. Equating frequency of the light to energy (as above), we
conclude that the atom has discrete energy states. However, the classical orbital model of
the atom predicts any energy is possible. In fact, it is unbounded below, which is another
problem!

1.4 Bohr model (Foot 1.2-1.3)
The observed emission frequencies occur at wavenumbers

ν̃ =
1

λ
= R

(
1

n2
− 1

n′2

)
,

for integers n, n′. Note the book’s use of wavenumbers, or inverse wavelengths, which are really
units of frequency or energy (just multiply by c or hc). Also note alternative terminology, the n = 1
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series is called the Lyman series, the n = 2 the Balmer series, the n = 3 the Paschen, and there are
even higher ones. Within each series, the n → n+ 1 line is called α, the n → n+ 2 line β, and so
forth.

These observations imply discrete levels with energy ∝ 1/n2. Let us see how we might find
these. Let us assume an electron of mass m = me = 9.11 × 10−31 kg and (negative) charge
e = 1.60 × 10−19 C orbiting a nucleus of mass M = Mp = 1.67 × 10−27 kg and the same but
positive charge.

By classical arguments, let’s assume we have a circular orbit. Setting the force inward to the
centripetal force for circular motion

e2

4πϵ0

1

r2
=

p2

mr
.

By the virial theorem, the binding energy of this orbit is

Eb = − e2

4πϵ0

1

2r
.

We can eliminate the unknown factor r if we knew Eb, but we don’t and we still get an infinite
number of possible orbits. Let us then consider that we might quantize the orbit according to the
deBroglie wavelength. The deBroglie wavelength will be λdB = h/p. We assume that each orbit
is an integer number of deBroglie wavelengths, so that

2πr = nh/p

p = nℏ/r,

which leads to the final result

1

r
=

e2

4πϵ0

m

n2ℏ2
,

Eb = −
(

e2

4πϵ0

)2
m

2n2ℏ2
.

In real units, this binding energy works out to 13.6 eV, or 2.2 × 10−18 J. If we quantize radiation
by E = hν, this leads to ν = 3.3× 1015 Hz. Using E = hcλ−1, this gives λ−1 = 1.1× 107 m−1.
The book uses the valid (but rare) SI unit m−1, but the literature more often uses cm−1.

1.5 Fine-structure constant and Bohr radius
A common way of writing the Bohr energy levels is to use the fine structure constant. This dimen-
sionless ratio shows up a lot in atomic physics. Taking n = 1, and setting −Eb = mv2/2 (virial
theorem), we obtain

α =
v

c
=

e2

4πϵ0ℏc
≈ 1/137.
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In this convention, Eb = −mc2α2/(2n2). We also define a Bohr radius a0 by

−2Eb = mc2α2/n2 =
e2

4πϵ0a0
=

αℏc
a0

,

a0 =
ℏ

mcα
,

taking n = 1 in the last step.

1.6 X-rays (Foot 1.5)
This section will mostly be to understand the scaling for nuclei with large charge. If the charge of
the nucleus is instead Ze, with Z the atomic number, we can go back to the previous expression,
and replace

e2

4πϵ0
by

Ze2

4πϵ0
.

Then we see that the frequencies are all multiplied by Z2, leading to the famous Z ∼ f 1/2 result of
H. G. J. Moseley. We also introduce the X-ray terminology, where the n = 1 series is calledK, the
n = 2 series L, and so on. Note that we will have, later on, an entirely different letter-to-number
scheme for angular momentum, i.e. s, p, d, f, g, h . . .. Atomic physics is fun, just be glad we’re not
doing molecules!

1.7 Reduced mass and nuclear recoil
Here we show a trick to take into account the recoil of the nucleus (i.e. the nucleus does not have
infinite mass). Let us write the classical Hamiltonian as

H =
p2e
2m

+
p2N
2M

+
e2

4πϵ0

1

|r⃗e − r⃗p|
.

First we do a little trick to eliminate the center of mass,

H =
1

2

(pe + pN)
2

m+M
+

1

2

m+M

mM

(
Mpe −mpN

m+M

)2

+
e2

4πϵ0

1

|re − rp|
,

H =
p2T

2(m+M)
+

p2∆
2µ

+
e2

4πϵ0

1

|r∆|
,

with µ = mM/(m+M) (reduced mass). Therefore, we will henceforth consider a single particle
system with mass given by the reduced mass. Note that this remains valid even in a fully quantum
mechanical treatment.

1.8 Zeeman effect (Foot 1.8)
A good sketch of the Zeeman apparatus is shown on page 17 of your book (section 1.8.1). I’m
going to walk you through the apparatus to show you how it works.

4



The conclusion from the data is that each line splits into three peaks upon application of a
magnetic field, with the center peak at π polarization, and the side peaks at σ polarization. Let’s
now work through a (totally classical) explanation. Zeeman assumed that the electron was bound
in a harmonic oscillator potential, governed by the equation

m ˙⃗v = −kr⃗ − ev⃗ × B⃗.

Simplifying a little bit and taking B⃗ along ẑ gives,

¨⃗r +
eB

m
˙⃗r × ẑ +

k

m
r⃗ = 0.

Define ΩC as the cyclotron resonance eB/m (twice the Larmor resonance from the book), and
ω2
0 = k/m as the oscillator frequency,

¨⃗r + ΩC
˙⃗r × ẑ + ω2

0 r⃗ = 0.

We propose a trial solution of the form

r⃗ =

x
y
z

 e−iωt.

This leads to a matrix equationω2
0 − ω2 −iωΩC 0
iωΩC ω2

0 − ω2 0
0 0 ω2

0 − ω2

x
y
z

 = 0.

We choose ω to make the determinant zero. Note that the off-diagonal terms proportional to ωmake
this slightly different from an ordinary matrix diagonalization. Obviously ω2 = ω2

0 is a solution.
The other solutions are found by solving(

ω2
0 − ω2

)2
= ω2Ω2

C .

The solutions are

ω2 = ω2
0 +

Ω2
C

2
±
√

ω2
0Ω

2
C + Ω4

C ,

ω2 ≈ ω2
0 ± ω0ΩC ,

ω ≈ ω0 ± ΩC/2.

The approximations are based on ΩC ≪ ω0, which for typical optical transitions and real-world
magnetic fields will be the case. Thus, from this splitting Zeeman was able to conclude that atoms
contained particles with the same charge-to-mass ratio as electrons from cathode ray experiments.
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