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12.1 3D cooling - Optical molasses
One point of the previous techniques is that they do not simply slow down atoms. The atoms are
actually cooled. Pure slowing, for example, would take stopped atoms and push them backwards.
But these techniques do not affect stopped atoms, because they are off-resonant until the very end!
Therefore, you might ask if it is possible to cool atoms by similar methods, and the answer is in
fact yes. For simplicity, let’s start by thinking about cooling along just one axis (the z-axis).

Imagine now that we have two beams propagating in opposite directions. Then the force will
be given by the scattering rate for beam 1, minus the scattering rate for beam 2 (because beam 2
points the other way). For atoms at rest, both beams are the same, and there is no force. However,
let us calculate the force on a moving atom, assuming we are below saturation. The force from the
left beam is

FL =
~kΓI
2Isat

1

1 + 4(δ0−kv)2

Γ2

,

where δ0 is the detuning seen by an atom at rest. Similarly, the entire force is

F =
~kΓI
2Isat

[
1

1 + 4(δ0−kv)2

Γ2

− 1

1 + 4(δ0+kv)2

Γ2

]
,

F =
~kΓI
2Isat

16δ0kv
Γ2

1 +
8(δ20+k2v2)

Γ2 +
16(δ20−k2v2)2

Γ4

.

I plot the shape on the board roughly. Let us consider the case that v → 0. Then we can approximate
this behavior as damping, F = −αv, where

α = lim
v→0

−8~k2δ0I

ΓIsat

1

1 +
8(δ20+k2v2)

Γ2 +
16(δ20−k2v2)2

Γ4

,

α = −8~k2δ0I

ΓIsat

1

[1 + (2δ0/Γ)2]
2 .

So clearly, we want to choose δ0 < 0 in order to get actual damping, instead of unstable anti-
damping.
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12.1.1 Consequences of damping

Now let us consider a system subject to such a damping force. We are interested in the average
kinectic energy (we are going to call this a “temperature”, without worrying whether atoms subject
to such cooling are in a proper thermal equilibrium). The kinetic energy (in z) is

Ez =
1

2
mv2z ,

dEz

dt
= mvz

dvz
dt

= −αv2z = −2α

m
Ez.

Thus, the energy is damped with timescale τ = m/(2α). This is typically a few microseconds. If
we put beams in all six directions, then the total kinetic energy is damped thusly as well.

12.1.2 Statistical fluctuations

The previous section considers a classical damping, in other words, the rate at which energy is
removed from the system on average. But we really would like to calculate what happens when
discrete photons are absorbed and emitted by the system. Consider at atom with momentum p0.
Then a photon of momentum ~k is absorbed, and emitted in a random direction. The momentum
space picture is now an atom with momentum lying somewhere on a sphere with radius δp = ~k
centered at p0 − ~k. Now, expectation value of the change in energy will be

⟨∆E⟩ = ⟨(p0 − ~k+ δp)2⟩
2m

− p20
2m

,

⟨∆E⟩ = ~2k2 + δp2 − 2~⟨p0 · k⟩ − 2~⟨δp · k⟩+ 2⟨p0 · δp⟩
2m

,

⟨∆E⟩ = 2~2k2 − 2~⟨p0 · k⟩
2m

,

The second term shows the effects of the average damping force we calculated above. The first
term, on the other hand, is a total heating of 2Er per photon scattered, where Er = ~2k2/(2m).
Now, our equation for the total heating/cooling rate is

dE

dt
= 6Rscat(2Er)− 2αE/m,

where the factor of six counts all the beams. Then
3

2
kBT =

6mRscatEr

α
,

kBT = 4mEr
Rscat

α
,

kBT =

4~2k2
2m

Γ
2

I
Isat

1
1+(2δ0/Γ)2

−8~k2
Γ

I
Isat

1
[1+(2δ0/Γ)2]

2

,

kBT =
−~Γ
8δ0

[
1 +

(
2δ0
Γ

)2
]
.
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Taking

kB
dT

dδ0
=

~Γ
8

[
1

δ20
− 4

Γ2

]
= 0,

δopt = −Γ/2,

kBTD =
~Γ
2
.

12.2 The MOT
Damping by itself leads to cooling, but it does not actually trap atoms. However, once again we
can introduce Zeeman shifts in order to accomplish this (as with Zeeman slower). The idea is to
circularly polarize the light, and use a magnetic field gradient. In this environment, we can ensure
the polarization direction is always opposite to the magnetic field on the side with the beams facing
in. This shifts the levels to bring red-detuned light closer to resonance, and therefore to add a
restoring force element. Following the discussion above, we can add the additional element to the
scattering formula (say in z direction)

FL =
~kΓI
2Isat

1

1 + 4(δ0−kv−βz)2

Γ2

,

where β = gµB

~ Bzz. Clearly this contributes an additional confinement equal to αβ/kz,

Fz = −αvz −
αβ

k
z.

Note the restoring force is typically twice as strong in one direction as in the other two.

12.3 The dipole force
Here we are going to go through the derivation of the dipole force, which is the force coming from
the refraction of the light beams by the atoms. [Draw picture of light rays bent by spheres]. Let
us now proceed to a derivation. I’m going to take a sort of shortcut compared to the book. We
are going to work in Born approximation, where the only force that acts is the electric field on the
dipole moment of the atom.The first point is to note that with external field E = E0 cos(ωt−kz)x̂,
the dipole moment is proportional to

−er ∝ Ax̂ [u cos(ωt− kz)− v sin(ωt− kz)] ,

where u and v are from the optical Bloch equations. So note that u and v determine everything up
to prefactors. Now, the interaction of the field with the dipole moment gives an interaction energy

U = A [u cos(ωt− kz0)− v sin(ωt− kz0)]E0(x, y, z) cos(ωt− kz),

where we are allowing E0 to have a large scale envelope (from the focus of a laser beam or some
such). Now, to find the force, we take the gradient of the interaction potential. However, we have
to be careful not to take the derivative of the atom’s components (that’s why they have subscripts).
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Because the force the field provides is the gradient acting on the dipole moment. We can also write
the force directly as

Fz = A [u cos(ωt− kz)− v sin(ωt− kz)]

[
∂E0

∂z
cos(ωt− kz) + E0k sin(ωt− kz)

]
.

Taking the time average

F̄z =
A

2

[
u
∂E0

∂z
− vE0k

]
.

The term proportional to vE0k is the scattering force. The other term is the dipole force. Taking
the ratio and comparing to previous results will give us the prefactor:

Fdipole/Fscat =
−u∂E0/∂z

vE0k
,

∂E0/∂z

E0

=
1

2

∂I/∂z

I
,

u

v
=

2δ

Γ
,

Fdipole/Fscat = − δ

Γk

∂I/∂z

I
,

Fdipole =
~δ
2

∇I/Isat
1 + 4δ2/Γ2 + I/Isat

,

which allows us to define a potential (assuming we neglect the saturation intensity in the denomi-
nator)

Udipole =
~δ
2

I/Isat
1 + 4δ2/Γ2 + I/Isat

,

Udipole =
~δ
Γ
Rscat ≈

~Γ2

8δ

I

Isat
.

12.4 Some basic Stat-Mech
Since Stat-Mech is not a prereq for the course, and since I do want to cover Bose-Einstein con-
densate (BEC) I will introduce briefly the concept of quantum statistics. The fundamental idea of
statistical mechanics is that each state of a system which is allowed by conservation laws is equally
probable. We then have two important conservation laws: conservation of energy and conservation
of particle number. Let us take our model system to be a bath plus an isolated level, which we call
the quantum state. Now the quantum state will be treated like a harmonic oscillator (if it is a boson;
if it is a fermion, then it is treated as a two-level system). The state will have some energyE. Think
of it like a particle in a box state (this concept will be more useful later as well). Therefore, adding
a new particle will cause the energy of the quantum state to increase by E, and to conserve energy
it will also cause the bath to decrease its energy by E, that is U → U − E. Similarly, the number
of particles in the bath will decrease by one for each particle added to the system,N → N −1. For
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n particles in the quantum state we have U → U − nE and N → N − n.

Now, there are many states in the bath. Probably many, many states, even if we limit to states
with energy U and particle numberN . We call this numberΩ. In fact, the number of possible states
will typically grow exponentially in the number of particles, because (for example) adding a new
degree of freedom multiplies the number of possible states. Since we like to make quantities that
are extensive (i.e. depend linearly on the number of particles), we will take the logarithm of the
number of states, as call this the “entropy” S = lnΩ. So the likelihood of having one particle in
the quantum state vs zero particles is

P (1)

P (0)
=

Ω(U − E,N − 1)

Ω(U, n)
= exp {−S(U,N) + S(U − E, n− 1)} .

Now, in general S will be some complicated quantity. But I am going to define the partial deriva-
tives of S as follows:

∂S

∂U
= β =

1

kBT
,

∂S

∂N
= −βµ = − µ

kBT
,

where T is the temperature, and µ is the chemical potential. If we were spending more time on
thermo or stat-mech, we’d go into this, but for now just trust me that this is how temperature is
defined. Now the ratio of probabilities is

P (1)

P (0)
= e−(E−µ)/kBT .

This is called the Gibbs factor, and if µ is set to zero it is called the Boltzmann factor. Then up to
a constant

P (n) =
1

Z
e−n(E−µ)/kBT ,

Finding ratios of probabilities is great, but to get the actual probabilities, we need to compute the
normalization factor

Z =
N∑

n=0

e−n(E−µ)/kBT .

This is called the grand partition function. For fermions, we have only two allowed levels, occupied
and unoccupied, so

Z = 1 + e−(E−µ)/kBT ,

P (1) =
e−(E−µ)/kBT

1 + e−(E−µ)/kBT
,

P (1) = ⟨n⟩ = 1

e(E−µ)/kBT + 1
.
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This is called the Fermi-Dirac distribution. It specifies the equilibrium occupation level for non-
interacting fermions. To get the total number of fermions, we would sum (integrate) this over
all energy levels (say, using the particle-in-a-box levels and taking the limit as the box becomes
infinite). We will do this in a minute, but since we are talking about BEC, we are going to move to
bosons. For bosons

Z =
N∑

n=0

e−n(E−µ)/kBT =
1

1− e−(E−µ)/kBT
=

1

1− ex
,

⟨n⟩ = 1

Z

N∑
n=0

ne−n(E−µ)/kBT =
1

Z
∂Z
∂x

,

⟨n⟩ = ex(1− ex)

(1− ex)2
=

1

e(E−µ)/kBT − 1
.

This is the Bose-Einstein distribution.
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