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13.1 Density of states
In order to find the total number of bosons in a box, we have to sum over all the energy levels of
the box, multiplying by the Bose factor for each level, i.e.

N =
∞∑
i=0

1

e(Ei−µ)/kBT − 1
=

∫ ∞

0

∞∑
i=0

δ(E − Ei)
1

e(E−µ)/kBT − 1
dE.

Now the quantity

g(E) =
∞∑
i=0

δ(E − Ei),

is called the density of states, and is very important. To calculate it, note that the number of states
of energy less than E is

∫ E

0
g(E)dE. In a box with side L and periodic boundary conditions, the

states have energies given by

E =
~2

2m

(
2π

L

)2 (
n2
x + n2

y + n2
z

)
,

E =
~2

2m

(
2π

L

)2

n2,

n =

√
2mE

~2
L2

(2π)2
.

where nx, ny, and nz are integers. The number of states up to a maximum level nmax can be
computed from the volume of a sphere as

N =
4π

3
n3
max.

Putting this together,

N(E) =
4π

3

(
2mE

~2
L2

(2π)2

)3/2

,

g(E) =
∂N

∂E
= 2πV

√
E

(
2m

~2(2π)2

)3/2

,

g(E)/V =

√
m3

2~6π4

√
E.
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Then, the total density of particles is

n =

√
m3

2~6π4

∫ ∞

0

√
E

e(E−µ)/kBT − 1
dE,

n =

√
m3

2~6π4
(kBT )

3/2

∫ ∞

0

u

e−µ/kBT eu − 1
du.

Now, clearly as µ becomes large and negative, this quantity can be as small as we like. And if µ is
positive, everything is total nonsense. But what about µ = 0? Then the integral gives,

n0 =

√
m3

2~6π4
(kBT )

3/2

∫ ∞

0

u1/2

eu − 1
du.

Now, this integral will be some dimensionless number (it’s 2.315 BTW). Note, importantly that
while the integrand diverges at u = 0, the singularity is integrable. For small u we have

u1/2

eu − 1
≈ u1/2

1 + u+ u2/2 + · · · − 1
≈ u−1/2.

Therefore, there is a finite n0, where even if µ = 0 we cannot exceed this number. What if n > n0.
Then we have the BEC state. The remaining atoms go into the ground state. Why the ground
state? Because the approximation that you can replace the sum by an integral breaks down. There
is actually only one ground state and the µ becomes arbitrarily close to zero.

13.1.1 Putting in some numbers

If we put in the mass of 87Rb and a density of 10 atoms per cubic micron, I get a transition temper-
ature of 86 nK.

13.2 Interactions
Of course, the above theory predicts finite occupation of the ground state for the non-interacting
system only. We would like to introduce interactions, and see how they influence the behavior.
However, first we should think a little about how atoms interact, and it is convenient to introduce
the concept of partial wave scattering. One striking fact is that the binding energy between two
atoms is usually thousands of Kelvin. And the BEC is at nanoKelvin. So how can this be “weakly”
interacting? The answer is that the interaction is very short range. Because energy is conserved,
any collision between ground state atoms is elastic, and so two colliding particles will not bind, no
matter how deep the interaction potential. Of course, three atoms can bind a pair and release the
third one at high speed, this is called three-body loss and it is to be avoided by making the density
low. What about the two body interactions? We would like to model the interactions as simply as
possible, but perturbation theory will break down with the deep potential.

13.2.1 Gross-Pitaevskii equation

Once we have the effect of the interactions under control, we will write an equation for how a BEC
behaves. With no interactions, the (pure) BEC is simply N atoms in the ground state. Therefore,
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it obeys the single-particle Schrödinger equation,{
− ~2

2M
∇2 + V (r)

}
ψ = Eψ.

This can be seen as minimizing an energy functional

Hs =
~2

2m
|∇ψ|2 + V (r)|ψ|2.

The Gross-Pitaevskii equation adds a term to the energy functional

HGP =
~2

2m
|∇ψ|2 + V (r)|ψ|2 + g

2

(
|ψ|2

)2
,

leading to the Gross-Pitaevskii equation (GPE),{
− ~2

2M
∇2 + V (r) + g|ψ|2

}
ψ = µψ.

But how to find g? How to do perturbation theory with deep potentials?

1. Find the scattering length for the deep potential.

2. Find the equivalent shallow potential with the same scattering length.

3. Do perturbation theory on the shallow potential.

4. Conclude that as far as long-range physics is concerned, the answers are the same.

13.2.2 Partial waves

Consider an atom in a plane wave state, incident on a fixed target, whose potential drops to zero at
some range. Actually we could also use the concept of reduced mass to consider a pair of atoms
incident at some relative wavevector. If we assume the interaction is spherically symmetric, we
would very much like to take advantage of the spherical harmonics so that we have only to solve a
1D equation instead of a 3D one. When solving for bound states, this is something we know how
to due. However, for an incoming plane wave, we have the state:

ψ = eikz = eikr cos θ.

Ideally we would like to expand this in terms of spherical harmonics,

eikr cos θ =
∞∑
l=0

clRl(r)Yl,0(θ).

We note there is no need for spherical harmonics with m ̸= 0, because the incoming state and all
properties are symmetric on the z-axis. What can be said about the functions Rl(r). First, because
the incoming plane wave satisfies the wave equation,

∇2ψ + k2ψ = 0,
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we know that the functions Rl(r) can be written as linear combinations of the spherical Bessel
functions of the first and second kind jl(kr) and ηl(kr). To find the coefficient, we take the limit
r → 0, and evaluate the integral

clRl(r) = 2π

∫ π

0

Y ∗
l,0(θ)e

ikr cos θ sin θ dθ,

clRl(r) ≈ 2π

∫ π

0

Yl,0(θ)

[
1 + ikr − 1

2
(kr)2 + · · ·

]
.

This is obviously bounded and hence we reject any component of the spherical Bessel functions
of the second kind (or spherical Neumann functions) diverge at the origin, while the plane wave
does not. Noting that the first two spherical Bessel functions (of the first kind) and their asymptotic
forms are

j0(kr) =
sin(kr)
kr

j0(kr) ≈ 1 (r → 0) j0(kr) ≈
sin(kr)
kr

(r → ∞),

j1(kr) =
sin(kr)
(kr)2

− cos(kr)
kr

j1(kr) ≈
kr

3
(r → 0) j1(kr) ≈

sin(kr − π/2)

kr
(r → ∞),

we can write out the first few terms and guess the result

eikr cos θ ≈
√
4πY0,0(θ) + i

√
12π

kr

3
Y1,0(θ) + · · · ,

eikr cos θ =
∞∑
l=0

il
√

4π(2l + 1)jl(kr)Yl,0(θ).

Now, we can solve each angular momentum “channel” or “partial wave” separately. As we’ll see
in a minute, then we can use the long-range asymptotic forms to determine how much probability
amplitude was scattered. But note now the equation in each channel is

− ~2

2m

d2ul
dr2

+ V (r)ul +
~2l(l + 1)

2mr2
ul = k2ul,

where u = rψ. For those channels with l > 0, if we take the limit of k → 0, we see that the
centrifugal barrier becomes large compared with the incident energy at a large distance, before the
potential even starts to matter! This is in line with a classical description of impact parameter.
Therefore, most of the time, we only have to carry out the expansion to the first term! But let’s
go ahead and see what happens. Suppose we solve the full Schrödinger equation and produce a
wavefunction ul. We know that u at large r has to satisfy the simple wave equation (because the
potential is zero). Therefore ul can be written

ul(r) = Alrjl(kr) +Blrηl(kr),

ul(r) −→
r→∞

Al

k
sin(kr − lπ/2)− Bl

k
sin(kr − lπ/2),

ul(r) −→
r→∞

Cl

k
sin(kr − lπ/2 + δl),

ul(r) −→
r→∞

Cl

2ik

[
ei(kr−lπ/2+δl) − e−i(kr−lπ/2+δl)

]
.
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If we denote the incoming wave as vl(r), then from the above (still at large r)

vl(r) −→
r→∞

il
√
4π(2l + 1)

2ik

[
ei(kr−lπ/2) − e−i(kr−lπ/2)

]
.

Since we’d like to set boundary conditions such that there is no incoming spherical wave, all the
incoming waves must come from the incident wave, so that

Cl = il
√
4π(2l + 1)eiδl .

This in turn implies

ul(r)− vl(r) −→
r→∞

il
√

4π(2l + 1)

2ik
ei(kr−lπ/2)

[
e2iδl − 1

]
,

ul(r)− vl(r) −→
r→∞

√
4π(2l + 1)

eiδl

k
sin(δl)eikr.

Therefore, the outgoing wave (with the incident wave subtracted) is given by[
∞∑
l=0

√
4π(2l + 1)

eiδl

k
sin(δl)Yl,0

]
eikr.

Then the total cross section is (summing over all of the Yl,0)

σ =
∞∑
l=0

σl =
∞∑
l=0

4π

k2
(2l + 1) sin2 δl.

The quantities δl are called the phase shifts, and e.g. δ0 is called the s-wave phase shift, δ1 is
called the p-wave phase shift, etc. Again remember we will only work with l = 0. Notice that in
this quantum treatment, the only thing that matters to the long-range physics is the phase shift for
scattering. Therefore, many different potentials might exist, but all potentials leading to the same
s-wave phase will look identical at low energy. Thus, the behavior of our BEC is determined by
the s-wave phase shift exclusively, and we can ignore the thousand-Kelvin scale physics going on
when two atoms get very close.

13.3 The finite square well
Let’s work the best example, which is a square well (i.e. spherical well) of potential−V0 and radius
a. Outside the well we have the asymptotic form

u2 = B sin(kr + δ0),

Inside the well the s-wave solution is given by

u1 = C sin(k0r), k0 =

√
k2 +

2m

~2
V0.
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Setting values and derivatives equal gives

C sin(k0a) = B sin(ka+ δ0),

k0C cos(k0a) = kB cos(ka+ δ0),

tan(ka+ δ0) =
k

k0
tan(k0a) =

ka

k0a
tan(k0a).

Now let us take the low energy limit ka→ 0, and get

ka+ δ0 ≈ ka
tan(k0a)

k0a
,

δ0 ≈ ka

(
tan(k0a)

k0a
− 1

)
.

If we also take the limit k0a→ 0, then

δ0 ≈ k
k20a

3

3
,

δ0 ≈ k
2mV0a

3

3~2
,

δ0 ≈ k
2mV0V

4π~2
.

For geometric reasons, the quantity−δ0/k is called the “scattering length”. In this case the outgoing
wave has the form

uout = sin [k(a− as)] .

Note that as can be positive if V0 > 0 k20 < 0, which makes perfect sense actually. It is typical for
as to converge to a particular value as k → 0. From the above, for a spherical well,

as =
2mV0V

4π~2
.

If we takem =M/2 (the reduced mass), we arrive at a formula,

V0V =
4π~2as
M

.

What is the quantity V0V . Well, it has units of energy per unit density, or energy density per unit
density squared. Thus it is appropriate to be the interaction energy in the Gross-Pitaevskii equation.
Furthermore, it makes sense. If the potential V0 is small, the first perturbative correction to the
energy will be

∆E =

∫
|ψ|2V0 dV = V0V |ψ|2.

This suggests an effective interaction of V0 times the probability of finding two atoms within V0 of
each other. In total this makes the interaction energy density equal to 1

2
V0V |ψ|4.
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13.4 Why is a BEC a superfluid?
Let’s review so far on BEC:

1. Depending on the density of states, the BE distribution can be finite at µ = 0.

2. If this occurs, have to go to more details of the states, and put all extra particles in the ground
state

3. Extra ground state particles interact and obey GPE

4. Excitations in the GPE follow a linear dispersion

(
ϵk + µ− ~ω gψ2

0

g(ψ∗
0)

2 ϵk + µ− ~ω

)(
u
v

)
= 0,

(ϵk + µ)2 = ~2ω2 + g2(|ψ2|)2,
~2ω2 = (ϵk + µ)2 − µ2,

~ω =
√
(ϵk + µ)2 − µ2.

For large ϵk, we have ~ω ∼ ϵk+µ, and for small ϵk we have ~ω ∼
√
2µϵk. Since ϵk ∼ k2, we have

a linear k-dependence for the sound waves. Note that these are the only type of excitations.

13.4.1 Landau’s criteria

Note that no excitations exist with a phase velocity, that is, a ratio of vc = ω/k = E/p, less than
some critical value (normally equal to

√
µ/m. Let us see the implications for a body moving in

the fluid. Suppose a very heavy object moves through the BEC. Now, the object would like to slow
down by giving some of it’s energy to the fluid. But as the energy is kinetic energy, it must also
transfer some momentum. The energy and momentum on slowing from v0 to v1

∆E =
1

2
M

[
v20 − v21

]
=

1

2
M

[
−2v0 · δv− δv2

]
,

∆p =Mδv,∣∣∣∣∆E∆p
∣∣∣∣ ≤ v0 −

1

2
|δv| ≤ v0.

Now, the argument of Landau is that if v0 < vc, no excitation is possible, because no excitation, or
set of excitations in the fluid can possibly carry momentum δp with less energy than vcδp.
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