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3.1 The spin-orbit interaction (Foot 2.3.2)
In addition to the other degrees of freedom, the electron posses a spin with coupling to an external
magnetic field given byH = −µ ·B = gsµBs ·B. Now µB is a constant equal to eℏ/2me. What is
the field that the electron experiences? We will make a boost to a reference frame comoving with
the electron, and calculate the magnetic field given by the (now moving) proton. Let us consider
the proton as moving with velocity −v and located a distance r away from the electron. Then,
according to the Biot-Savart law,

B =
µ0

4π

−ev× r
|r|3

= − 1

c2
v× E =

1

mec2
E× p.

Now the vector operator E points in the direction of r, and we can write it as

E =
1

e

∂V

∂r

r
r
=

e/4πϵ0
r3

r.

Therefore we can express B in terms of the angular momentum l (adopting the books convention
of pulling ℏ out of l),

B =
ℏe/4πϵ0
mec2

1

r3
l.

Putting the entire interaction together, we ought to have

H =
gsℏ2e2/4πϵ0

2m2
ec

2

1

r3
s · l,

H = gsα
2hca30R∞

1

r3
s · l,

where we introduced the fine structure constant α = e2/4πϵ0ℏc. Now, the factors of c showing up
should convince us that this might be a relativistic effect, and indeed, the strength of the interaction
depends on the velocity compared to c, in that the magnetic field strength can also be derived
by. This should lead us to consider if there are other, relativistic effects which we missed, and
of course there are. One, called the Thomas precession, predicts. These effects are sort of hard
to work through, and the best way to get all relativistic atomic effects is to start from the Dirac
equation (which we are not discussing), and derive them that way. But we are just going to quote
the results. And that is, that gs is replaced by gs − 1, and that gs − 1 is equal to 1.
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The quantity s · l actually commutes with the Hamiltonian, whereas the factor 1
r3
, does not. So

we will use perturbation theory, which at this order is simply to replace 1/r3 by it’s expectation
value. This is something we can compute by various clever tricks, but this is all beside the point
and we will just say, for now, that we have some number sitting in front of s · l.

3.2 Angular momentum tricks
Now we want to compute the spectrum of s · l. Let us consider the operator j = s + l. Now, we
want to prove a few things:

1. [jz, l2] = 0

2. [jz, s2] = 0

3. [jz, s · l] = 0.

A useful expansion is

j2 = lzsz +
1

2
(l+s− + l−s+) .

So we have a complete set of commuting observables j2, jz, s2, l2. Now s2 = 3/4, l2 = l(l + 1).
So we need to compute the spectrum of j2. Now, j2 will be j(j + 1) for some allowed values of
j. The maximum possible value will be l + s, because this is the largest jz can ever be! The next
observation to make, is that the total number of states in the Hilbert space needs to be constant. In
the l, s basis, we have (2l + 1)(2s+ 1) states. In the so-called “stretched” configuration, there are
(2l+2s+1) states. If we lower the total angular momentum j by 1, there would be a (2l+2s− 1)
states. If we sum all the way down to zero (sort of, in the half integer case), we would get (l+s+1)2

states. Some math now shows

(l + s+ 1)2 = (2l + 1)(2s+ 1) = l2 + s2 − 2sl = (l − s)2.

So this suggests that the sum should run from (2l + 2s + 1) down to (2|l − s| + 1). In fact it can
be shown that this sum gets the required number of states.

Now the task is to find the value of s · l. But this can be seen form

2s · l = j2 − l2 − s2.

For s = 1/2, the allowed values are j + 1/2 and j − 1/2, so the dot product takes the values l/2
and −l/2− 1/2, which differ by l + 1/2. Quoting a result for the expectation of 1/r3, which is⟨

1

r3

⟩
=

1

(na0)3
1

l(l + 1
2
)(l + 1)

,

we arrive at the spin orbit splittings

E+ =
α2hcR∞

2n3

l

l(l + 1
2
)(l + 1)

,

E− = −α2hcR∞

2n3

l + 1

l(l + 1
2
)(l + 1)

.
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3.3 Full hydrogen atom picture
There are a few other relativistic effects which we have neglected. The first is the relativistic
dispersion correction, which contributes and negative shift of α2hcR∞/2n3(1/(l + 1/2)− 3/4n).
The second is called the Darwin term, and only affects s states. When the dust settles, the most
important factor is that only the total angular momentum j matters, not l or s. This means in
particular that the Dirac equation predicts that the 2s and 2p1/2 states are degenerate. In fact, this is
also not true, there is an effect called the Lamb shift, which is a QED calculation we won’t discuss
too much, but it predicts a small shift between these levels. So a full picture of the states is as
follows. Schrödinger predicts a huge degeneracy, Dirac lifts the degeneracy but adds a new one
based on j, and Lamb lifts all the degeneracies.

3.4 Lamb’s experiment
Here we are going to talk briefly about the Lamb shift and how it’s measured. In the late nineteen
thirties, it was suspected that the 2s1/2 state was shifted up in energy relative to the 2p1/2 state,
although the two should be the same. This was observed based on the splitting of the Balmer α
line. Knowing about selection rules, let us count the sub-shell transitions which could possibly
account for the Balmer α line. We start with principle quantum number 2, so we have the states
2s1/2, 2p1/2, and 2p3/2. The s state can transition to 3p1/2 or 3p3/2, and either of the 2p states can
transition to 3s1/2, or to 3d3/2 or 3d5/2, for a total of 8 possible transitions. However, there is one
which is forbidden, which is 2p1/2 → 3d5/2, because total angular momentum cannot be conserved.
The Dirac theory predicts the spacing for these transitions, and also predicts that 2s1/2 → 3p1/2
and 2p1/2 → 3s1/2 are coincident, as are 2s1/2 → 3p3/2 and 2p1/2 → 3d3/2. However, the observed
spacings did not match the theory precisely, and it was suspected that 2s1/2 is shifted relative to
2p1/2. After the war, using microwave technology developed for radar, Lamb was able to shoot a
beam of hydrogen in the metastable 2s1/2 state, and use microwaves to directly drive the 2s1/2 →
2p3/2, and, importantly, the 2s1/2 → 2p1/2 transition, the second of which was expected to occur at
zero frequency, but which Lamb found to be shifted by about 1000 MHz. This was explained by
Hans Bethe in an interesting way: perturbation theory by radiation and absorption of spontaneous
photons predicts an (infinite) negative shift to the 2s level. However, for a free electron, there is a
similar shift, such that if one subtracts the free electron shift from the 2s level shift, a finite positive
shift of the 2s level results. This has major implications for the understanding of observed particle
properties.
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