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4.1 Slater determinants
This week we are going to try to cover both the alkalis, and theLS coupling scheme. The order will
be slightly different than the book. The first thing we are going to do is write down the Hamiltonian
for a multi-electron atom.

Ĥ =
N∑
i=1

∇2
i +

N∑
i=1

Ze2

4πϵ0

1

ri
+

N∑
i=1

N∑
j=i+1

e2

4πϵ0

1

|ri − rj|
.

The solution is going to be a wavefunction of the form,

Ψ(r1, r2, · · · , rN) .

Now, of utmost importance is that the wavefunction be antisymmetric with respect to exchange of
any two electrons. Of course, spin exists, sowe can have spatially symmetric but spin-antisymmetric
wavefunctions too. We obviously have a big space of wavefunctions to look through, so it’s helpful
to make some approximations to make things easier. In fact, it’s essential to do so. A particularly
useful sub-class of wavefunctions are called Slater determinants, constructed as follows:

Ψ(r1, r2, · · · , rN) = det


ψ1(r1) ψ1(r2) · · · ψ1(rN)
ψ2(r1) ψ2(r2) · · · ψ2(rN)

...
... . . . ...

ψN(r1) ψN(r2) · · · ψN(rN)


These are essentially product wavefunctions, only with the correct symmetry enforced. In fact
exchange of particles is a symmetry of the Hamiltonian. Supposing we ignore interactions between
the electrons, we would get a ground state with the lowestN wavefunctions (again, counting spin),
each with one electron. Then we have the famous “building up” principle of chemistry. This turns
out to be a reasonable picture in some ways, but misses some other points.

4.2 Hartree-Fock method
How to proceed using a wavefunction composed of Slater determinants? The basic theoretical tool
is called the Hartree-Fock method, and it is based on the variation method. It’s kind of a chemist’s
thing, but we need to learn it anyway. As you recall the variational method is a technique to solve for

1



approximated wavefunctions in a restricted space, by choosing the wavefunction with the minimum
expectation value of the energy,

Evar
0 = min ⟨ψ| Ĥ |ψ⟩ .

Now clearly Evar
0 ≥ E0. If ψ includes all possible wavefunctions, then the variational method will

be exact. This can be shown with the calculus of variations. If ψ is restricted to Slater determinants,
this leads to a set of self-consistent equations, which are best thought of iteratively.

Let’s ask, what is the expectation of energy in the simple “building up” state ψB.

⟨ψB| Ĥ |ψB⟩ =
∑
i

Ei +
1

2

e2

4πϵ0

∑
<ij>

⟨ψB|
1

rij
|ψB⟩ ,

⟨ψB| Ĥ |ψB⟩ =
∑
i

Ei +
1

2

e2

4πϵ0

∑
<ij>

∫ ∫
|ψi(r)|2|ψj(r′)|2

1

|r− r′|
d3rd3r′ + exchange.

Now we are considering the state ψ1 variationally. It appears to see an “effective” potential, given
by

Veff =
−Ze2

4πϵ0

1

r
+

e2

4πϵ0

N∑
i=2

∫
|ψi(r′)|2

1

|r− r′|
d3r′.

In the full Hartree-Fock method, we would have to include a Slater determinant, and then we would
generate additional terms, called the exchange energy, of the form,

Eexchg = −1

2

e2

4πϵ0

∑
<ij>

∫ ∫
ψ∗
i (r)ψ

∗
j (r

′)
1

|r− r′|
ψi(r

′)ψj(r)d
3rd3r′.

However, we are going to ignore those terms for now, in which case this potential is nothing more
than the nuclear potential, plus the potential given by the other electrons, assuming them to be
classical charge distributions. In a full Hartree-Fock, which we won’t really do, we would start with
the initial guess for the wavefunctions, say assuming no interaction. Then, we update the effective
potential (and exchange terms) to include the charge of the other electrons, and re-solve for the
new wavefunctions (which has to be done numerically as the modified potential is too difficult to
do analytically). Then we put those update wavefunctions in to define a new potential, and iterate,
and finally we hope it converges to some unique value.

4.3 Central-field approximation
Now, to make our lives even easier, we are going to simplify even more. We are going to say that
the effective potential is a function of r only, so that the effective central-field potential has the
form VCF(r). We can then easily define the central-field ECF(r) =

∂
∂R
VCF(r)r̂. We can make some

observations about the central field. For small r, we have that

ECF(r) →
Ze

4πϵ0r2
r̂,
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because there are no electrons really close to the nucleus. For large r, we have

ECF(r) →
e

4πϵ0r2
r̂,

because all of the electrons except this one are close in to the nucleus, so it just looks like an ion
with charge +e. A huge benefit to the central-field is that we don’t need to recompute angular
eigenfunctions, we still get to use the Yl,m! Therefore, we only need to worry about the radial
equation, and we can still simply number the states with each value of l, so it still makes sense to
talk about, for example, a 3d state in lithium.

4.4 The special thing about alkalis
Hydrogen had pretty simple wavefunctions, but for spectroscopy it’s pretty awful, because the
Lyman lines are all in the deep UV where air absorbs light and it’s really difficult to make light.
Furthermore, if I excite hydrogen, I can get “stuck” in the 2s states, because those are metastable.
Another aspect is that the excited states can be ionized by absorption of Lyman α radiation. The
alkalis from lithium onward, however, don’t have any of these problems. By blocking the 1s state,
the outermost electron has it’s lowest state as 2s, so there are no metastable states. Also, the 2p
state lies less than half-way to ionization, so subsequent ionization is not an issue. This makes the
alkalis everyone’s go to atom for spectroscopy.

4.5 The quantum defect
A good rule of thumb for the alkali levels is to take the Rydberg formula, and simply add an offset
to the principle quantum number n, called the quantum defect:

E(n, l) =
−hcR∞

(n− δl)2
.

The quantum defect roughly captures the effects of the inner electrons. Hence the dependence on
l, as the higher l wavefunctions do not probe the region near the nucleus nearly as much. We can
then define the effective quantum number n∗ = n− δl. This ends up in the range of 1.5 to 2 for the
alkalis.

4.6 Spin-orbit coupling in alkalis
Because the alkali structure is so similar to hydrogen, the spin-orbit coupling can be computed in
basically the same way. So we have 2s1/2, 2p1/2, 2p3/2, etc. To quantify the magnitude of the effect,
recall that for hydrogen-like atoms the spin-orbit splitting is given by

∆Es-o =
Z4α2hcR∞

n3l(l + 1)
.

The modified form for the alkalis is

∆Es-o,alkali =
Z2α2hcR∞

(n∗)3l(l + 1)
,
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here, we made the same replacement of the quantum defect, and also we used the power Z2 to
interpolate between Z4 dependence of the hydrogen-like ion (relevant near zero where the spin-
orbit coupling is big), and Z0 dependence of a singly-charge atom (relevant far away and useful to
determine the energy).

4.7 Relative intensites
Since we are moving into some spectroscopy, let’s consider a simple rule for transition strengths.
This is to say that the total strength of all absorption or emission lines between two states is pro-
portional to the degeneracy of the state. This comes from the fact that the strength in the non-spin
orbit coupled case all these lines are the same, and the spin-orbit coupling is a weak perturbation
(usually). So an equilibrium situation involves equal populations of all the mj levels, and hence
the total transition strength will be proportional to the degeneracy.

4.8 Angular momentum couplings
Imagine an atom with more than one valence electron (e.g. carbon). There are now two orbital
angular momenta, l, l1 and l2, and two spins, s1, and s2. We need to figure out how to add all of
these up to make the total angular momentum J. There are two basic ways: either add the orbital
angular momenta to make L, and all spins to make. I will now attempt to motivate the interactions
which lead to these couplings.

4.9 Spin interactions and LS coupling
Let’s come back to the notion of the exchange interaction between a pair of particles:

Eexchg = − e2

4πϵ0

∫ ∫
ψ∗
1(r)ψ

∗
2(r

′)
1

|r− r′|
ψ1(r

′)ψ2(r)d
3rd3r′.

The minus sign comes from our Slater determinant, because we must be an a totally antisymmetric
wavefunction with respect to Fermion exchange. However, we have to consider spin. In fact, if
we have different spins, we can be in a totally anti-symmetric spin wavefunction, but a totally
symmetric spatial wavefunction. For example,

|1s1s ↑↓⟩ − |1s1s ↓↑⟩ ,

is symmetric spatially and antisymmetric with spin. This configuration does not generate an ex-
change term, because the exchange flips the spin. We can also consider other states, like

|1s2s ↑↑⟩ − |2s1s ↑↑⟩ .

In this case, the spatial wavefunction is anti-symmetric, and the Pauli exclusion principal keeps the
two identical spins apart. Of course we can also have

|1s2s ↑↓⟩ − |2s1s ↓↑⟩ ,
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which has no exchange term. However, this is really a superposition of two states with opposite
exchange integrals:

|(1s2s− 2s1s)(↑↓ + ↓↑)⟩ + |(1s2s+ 2s1s)(↑↓ − ↓↑)⟩

The point of all this is that the total spin of the system, S, matters. Similar arguments exist for
the total angular momentum. For example, with two electrons in a d orbital, the interaction may
depend on whether they are in states with the same value of m (for example, both in m = 2),
versus one inm = 2 and the other inm = 0. Thus I expect L, the total orbital angular momentum
operator, to matter. Absent any spin-orbit coupling, I therefore expect L2 and S2 to commute with
the Hamiltonian, so that different values of S and L will give different energies. Now is when
things are going to get really fun. Spin-orbit coupling does exist, but let’s say it’s small compared
with the electrostatic terms. The spin-orbit Hamiltontian is

Hs-o = β1s1 · l1 + β2s2 · l2.

Now, to do perturbation theory we need to know the expectation of the operator s1 in the state S.
It turns out, due to something called the Wigner-Eckart theorem, that the expectation value of any
vector operator is proportional to the vector S, since this is the only vector that can be defined.
Thus, prefactors aside, the two spin-orbit terms lead to just one proportional to L · S. Here is the
basic procedure to put everything together:

1. Figure out the configuration (i.e. 1s22s22p13p1).

2. Figure out what the possible values of L and S are. In this case, we have L is the sum of two
spin 1 particles, so L = 0, 1, 2. S = 0, 1.

3. Now couple the values of S and L to make J .

4. If the electrons are in the same state (i.e. 1s22s22p2), we need to figure out which combina-
tions of L and S are allowed by the anti-symmetrization. I find it helpful to start with the
largest possible value of Lz, the total angular momentum, and within that the biggest Sz. You
can count total states and use the n choose k formula to find the total size of the Hilbert space.
Then subtract out the configurations as you find them. So biggest is Lz = 2, which forces
L = 2, S = 0. Then Lz = 1, which has four ways, one from L = 2 is used up by three more
from L = 1, S = 1. Then finally Lz = 0, which has 5 ways, 4 we counted already, and the
fifth must be L = 0, S = 0.

5. These states are represented by a term symbol 2S+1LJ , where L is usually a capital letter S,
P ,D, etc. So carbon has 1D2, 3P2, 3P1, 3P0, 1S0, and these are pronounced “singlet D two”,
“triplet P two”, etc.

4.10 The jj coupling scheme
In the previous, we coupled orbital angular momenta to make L before adding spin-orbit coupling
because it was assumed spin-orbit is a weaker effect. This is true for light atoms but less so for heavy
ones, and particularly for atoms in different sub-shells. Let’s talk about the nsnp configuration. If
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we did LS coupling, we’d have L = 1 obviously, and we’d have S = 1 or S = 0. So we’d have
3P2, 3P1, 3P0, and 1P1. Now if we do jj coupling, we first add together spin and orbit in the s state,
which leaves j1 = 1/2. Then we have two values of j2, namely j2 = 3/2 and j2 = 1/2. This gives
us two states written as (1/2, 1/2) and (1/2, 3/2). The adding the total angular momentum gives
(1/2, 1/2)0, (1/2, 1/2)1, (1/2, 3/2)1, and (1/2, 3/2)2. Note that there are always the same number
of each J state, just in different terms! Also, note that the (1/2, 1/2)1 and (1/2, 3/2)1 both include
some amount of spin singlet and triplet. This is important, as there is no perfect LS scheme, in
reality all couplings fall somewhere in between the LS and jj limits, in the intermediate coupling
scheme. So a little bit of 1P1 canmix with 3P1, which allows so-called intercombination transitions.
Since electric dipoles do not affect spin, we cannot move between singlet and triplet otherwise. So,
3P1 states have a weak intercombination transition, whereas 3P0 and 3P2 states are extremely long
lived.

4.11 The interval rule
Back in the LS scheme, we finally add L and S together to make J . The value of the L · S term
comes out as 2L · S = J2 − L2 − S2. This can tell us about the spacing of the levels: level J is
spaced apart from level J − 1 by an amount J(J + 1)− (J − 1)J = 2J . So the spacing between
J = 2 and J = 1 is twice that between J = 1 and J = 0. This is called the interval rule. Note that
it does not apply in the intermediate coupling scheme, so this is a way to check how well the LS
coupling applies.

4.12 Hyperfine splitting
Thus far we have only considered the nucleus as being an electric charge. However, the nucleus
also carries a spin, as does the electron. The nucleus interacts with the magnetic field by the formula

−gIµNI · B,

where µN = µBme/Mp, and gI is a fudge factor that we leave to nuclear physicists to figure
out. This moment can couple to the magnetic field produced by the electron. Let’s make a simple
estimation, assuming the nucleus is fixed. We have two ways to do this. For s states, we don’t
worry about magnetic field produce by the orbital angular momentum of the electron, and only
worry about the electron’s spin. In this case we consider only the region very near the nucleus, as the
nucleus itself is extremely small. Considering the electron’s wavefunction to define amagnetization
density

M = −gsµBs|ψ(r)|2.

Now, from E&M, we know that inside a uniformly magnetized sphere, we have a field B =
2/3µ0M. This same argument shows zero field in the empty region of a hollow sphere (analogous
to, but not the same as, the zero field inside a hollow charged sphere). Thus, we get an electron
field of

Be = −2

3
µ0gsµB|ψ(0)|2s,
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leading to a hyperfine interaction

HHFS = gIµN
2

3
µ0gsµB|ψ(0)|2I · s.

Now let’s make some gestures in the direction of the case l ̸= 0. In this case, the field of the electron
can be computed from the formula,

Be =
µ0

4π

{
−ev× r
r3

− µe − 3(µe · r̂)r̂
r3

}
,

where the first term is the orbital magnetic field (Biot-Savart law) and the second term is the mag-
netic dipole of the spin. At this point, we wave our hands, and argue that all of these terms depend
on µB and 1/r3, and the angular momentum, so we get some interaction (to do it right we would
be doing some difficult angular integrals)

HHFS ∝ gIµNµ0µB

⟨
1

r3

⟩
I · J,

HHFS = AI · J.

With l = 0, we had J = s, so in fact the interaction will always involve I · J. Like fine structure,
we have a 1/r3 dependence, but we lack a dependence on the nuclear charge Z, instead depending
on nuclear moment. Therefore, we expect a Z dependence instead of a Z2 dependence. This is
a pretty crude approximation, but something to keep in mind, and in general it’s true that high-Z
atoms have more hyperfine splitting. Note also that the interval rule should apply to hyperfine
splitting, although interactions which are higher powers of I · J are also allowed if we consider
quadrupolar nuclei.

4.13 Other nuclear effects
The nucleus has other small effects on the electronic structure. These sometimes lead to isotope
shifts, for example between hydrogen and deuterium, but isotope shifts are present in nearly all
species. One of these effects is of course the reduced mass effect. Another effect is nuclear size,
which gives a small correction to the Coulomb potential at short range. For hydrogen, and highly
charge hydrogen-like atoms, these effects can be quantified because exact results for transitions
can be calculated.
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