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5.1 Spin-orbit coupling in alkalis
Because the alkali structure is so similar to hydrogen, the spin-orbit coupling can be computed in
basically the same way. So we have 2s1/2, 2p1/2, 2p3/2, etc. To quantify the magnitude of the effect,
recall that for hydrogen-like atoms the spin-orbit splitting is given by

∆Es-o =
Z4α2hcR∞

n3l(l + 1)
.

The modified form for the alkalis is

∆Es-o,alkali =
Z2α2hcR∞

(n∗)3l(l + 1)
,

here, we made the same replacement of the quantum defect, and also we used the power Z2 to
interpolate between Z4 dependence of the hydrogen-like ion (relevant near zero where the spin-
orbit coupling is big), and Z0 dependence of a singly-charge atom (relevant far away and useful to
determine the energy).

5.2 Relative intensites
Since we are moving into some spectroscopy, let’s consider a simple rule for transition strengths.
This is to say that the total strength of all absorption or emission lines between two states is pro-
portional to the degeneracy of the state. This comes from the fact that the strength in the non-spin
orbit coupled case all these lines are the same, and the spin-orbit coupling is a weak perturbation
(usually). So an equilibrium situation involves equal populations of all the mj levels, and hence
the total transition strength will be proportional to the degeneracy.

5.3 Angular momentum couplings
Imagine an atom with more than one valence electron (e.g. carbon). There are now two orbital
angular momenta, l, l1 and l2, and two spins, s1, and s2. We need to figure out how to add all of
these up to make the total angular momentum J. There are two basic ways: either add the orbital
angular momenta to make L, and all spins to make. I will now attempt to motivate the interactions
which lead to these couplings.
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5.4 Spin interactions and LS coupling
Let’s come back to the notion of the exchange interaction between a pair of particles:

Eexchg = − e2

4πϵ0

∫ ∫
ψ∗
1(r)ψ

∗
2(r

′)
1

|r− r′|
ψ1(r

′)ψ2(r)d
3rd3r′.

The minus sign comes from our Slater determinant, because we must be an a totally antisymmetric
wavefunction with respect to Fermion exchange. However, we have to consider spin. In fact, if
we have different spins, we can be in a totally anti-symmetric spin wavefunction, but a totally
symmetric spatial wavefunction. For example,

|1s1s ↑↓⟩ − |1s1s ↓↑⟩ ,

is symmetric spatially and antisymmetric with spin. This configuration does not generate an ex-
change term, because the exchange flips the spin. We can also consider other states, like

|1s2s ↑↑⟩ − |2s1s ↑↑⟩ .

In this case, the spatial wavefunction is anti-symmetric, and the Pauli exclusion principal keeps the
two identical spins apart. Of course we can also have

|1s2s ↑↓⟩ − |2s1s ↓↑⟩ ,

which has no exchange term. However, this is really a superposition of two states with opposite
exchange integrals:

|(1s2s− 2s1s)(↑↓ + ↓↑)⟩ + |(1s2s+ 2s1s)(↑↓ − ↓↑)⟩

The point of all this is that the total spin of the system, S, matters. Similar arguments exist for
the total angular momentum. For example, with two electrons in a d orbital, the interaction may
depend on whether they are in states with the same value of m (for example, both in m = 2),
versus one inm = 2 and the other inm = 0. Thus I expect L, the total orbital angular momentum
operator, to matter. Absent any spin-orbit coupling, I therefore expect L2 and S2 to commute with
the Hamiltonian, so that different values of S and L will give different energies. Now is when
things are going to get really fun. Spin-orbit coupling does exist, but let’s say it’s small compared
with the electrostatic terms. The spin-orbit Hamiltontian is

Hs-o = β1s1 · l1 + β2s2 · l2.

Now, to do perturbation theory we need to know the expectation of the operator s1 in the state S.
It turns out, due to something called the Wigner-Eckart theorem, that the expectation value of any
vector operator is proportional to the vector S, since this is the only vector that can be defined.
Thus, prefactors aside, the two spin-orbit terms lead to just one proportional to L · S. Here is the
basic procedure to put everything together:

1. Figure out the configuration (i.e. 1s22s22p13p1).

2. Figure out what the possible values of L and S are. In this case, we have L is the sum of two
spin 1 particles, so L = 0, 1, 2. S = 0, 1.
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3. Now couple the values of S and L to make J .

4. If the electrons are in the same state (i.e. 1s22s22p2), we need to figure out which combina-
tions of L and S are allowed by the anti-symmetrization. I find it helpful to start with the
largest possible value of Lz, the total angular momentum, and within that the biggest Sz. You
can count total states and use the n choose k formula to find the total size of the Hilbert space.
Then subtract out the configurations as you find them. So biggest is Lz = 2, which forces
L = 2, S = 0. Then Lz = 1, which has four ways, one from L = 2 is used up by three more
from L = 1, S = 1. Then finally Lz = 0, which has 5 ways, 4 we counted already, and the
fifth must be L = 0, S = 0.

5. These states are represented by a term symbol 2S+1LJ , where L is usually a capital letter S,
P ,D, etc. So carbon has 1D2, 3P2, 3P1, 3P0, 1S0, and these are pronounced “singlet D two”,
“triplet P two”, etc.

5.5 The jj coupling scheme
In the previous, we coupled orbital angular momenta to make L before adding spin-orbit coupling
because it was assumed spin-orbit is a weaker effect. This is true for light atoms but less so for heavy
ones, and particularly for atoms in different sub-shells. Let’s talk about the nsnp configuration. If
we did LS coupling, we’d have L = 1 obviously, and we’d have S = 1 or S = 0. So we’d have
3P2, 3P1, 3P0, and 1P1. Now if we do jj coupling, we first add together spin and orbit in the s state,
which leaves j1 = 1/2. Then we have two values of j2, namely j2 = 3/2 and j2 = 1/2. This gives
us two states written as (1/2, 1/2) and (1/2, 3/2). The adding the total angular momentum gives
(1/2, 1/2)0, (1/2, 1/2)1, (1/2, 3/2)1, and (1/2, 3/2)2. Note that there are always the same number
of each J state, just in different terms! Also, note that the (1/2, 1/2)1 and (1/2, 3/2)1 both include
some amount of spin singlet and triplet. This is important, as there is no perfect LS scheme, in
reality all couplings fall somewhere in between the LS and jj limits, in the intermediate coupling
scheme. So a little bit of 1P1 canmix with 3P1, which allows so-called intercombination transitions.
Since electric dipoles do not affect spin, we cannot move between singlet and triplet otherwise. So,
3P1 states have a weak intercombination transition, whereas 3P0 and 3P2 states are extremely long
lived.

5.6 The interval rule
Back in the LS scheme, we finally add L and S together to make J . The value of the L · S term
comes out as 2L · S = J2 − L2 − S2. This can tell us about the spacing of the levels: level J is
spaced apart from level J − 1 by an amount J(J + 1)− (J − 1)J = 2J . So the spacing between
J = 2 and J = 1 is twice that between J = 1 and J = 0. This is called the interval rule. Note that
it does not apply in the intermediate coupling scheme, so this is a way to check how well the LS
coupling applies.
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