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6.1 Hyperfine splitting
Thus far we have only considered the nucleus as being an electric charge. However, the nucleus
also carries a spin, as does the electron. The nucleus interacts with the magnetic field by the formula

−gIµNI · B,

where µN = µBme/Mp, and gI is a fudge factor that we leave to nuclear physicists to figure
out. This moment can couple to the magnetic field produced by the electron. Let’s make a simple
estimation, assuming the nucleus is fixed. We have two ways to do this. For s states, we don’t
worry about magnetic field produce by the orbital angular momentum of the electron, and only
worry about the electron’s spin. In this case we consider only the region very near the nucleus, as the
nucleus itself is extremely small. Considering the electron’s wavefunction to define amagnetization
density

M = −gsµBs|ψ(r)|2.

Now, from E&M, we know that inside a uniformly magnetized sphere, we have a field B =
2/3µ0M. This same argument shows zero field in the empty region of a hollow sphere (analogous
to, but not the same as, the zero field inside a hollow charged sphere). Thus, we get an electron
field of

Be = −2

3
µ0gsµB|ψ(0)|2s,

leading to a hyperfine interaction

HHFS = gIµN
2

3
µ0gsµB|ψ(0)|2I · s.

Now let’s make some gestures in the direction of the case l ̸= 0. In this case, the field of the electron
can be computed from the formula,

Be =
µ0

4π

{
−ev× r
r3

− µe − 3(µe · r̂)r̂
r3

}
,

where the first term is the orbital magnetic field (Biot-Savart law) and the second term is the mag-
netic dipole of the spin. At this point, we wave our hands, and argue that all of these terms depend
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on µB and 1/r3, and the angular momentum, so we get some interaction (to do it right we would
be doing some difficult angular integrals)

HHFS ∝ gIµNµ0µB

⟨
1

r3

⟩
I · J,

HHFS = AI · J.

With l = 0, we had J = s, so in fact the interaction will always involve I · J. Like fine structure,
we have a 1/r3 dependence, but we lack a dependence on the nuclear charge Z, instead depending
on nuclear moment. Therefore, we expect a Z dependence instead of a Z2 dependence. This is
a pretty crude approximation, but something to keep in mind, and in general it’s true that high-Z
atoms have more hyperfine splitting. Note also that the interval rule should apply to hyperfine
splitting, although interactions which are higher powers of I · J are also allowed if we consider
quadrupolar nuclei. To find the spectrum of hyperfine interactions, as before consider the operator
F = I+ J.

6.2 Other nuclear effects
The nucleus has other small effects on the electronic structure. These sometimes lead to isotope
shifts, for example between hydrogen and deuterium, but isotope shifts are present in nearly all
species. One of these effects is of course the reduced mass effect. Another effect is nuclear size,
which gives a small correction to the Coulomb potential at short range. For hydrogen, and highly
charge hydrogen-like atoms, these effects can be quantified because exact results for transitions
can be calculated.

6.3 Zeeman effect
We now consider, in a quantum mechanical way, the effect of a magnetic field on our atom. We
are going to work within perturbation theory, so our first assumption is that the principal quantum
number and orbital angular momentum quantum numbers are not affected by the magnetic field.
Next we observe that the z-axis angular momentum operator Fz (or Jz) remains a good quantum
number, since rotation around the magnetic field is still a symmetry of the system (note we are
putting the field on the z axis by convention). Since we are working within perturbation theory,
let’s consider first the effect of magnetic fields on spins and orbital angular momenta directly. Now,
we now that electrons and nuclei couple to the field via

He = gsµBszB, Hn = −gIµNIzB.

What about orbital angular momentum? We derived a classical result earlier, but let’s do a quantum
treatment. To add magnetic field to the Schrödinger equation, we replace p by p+ eA, where A is
the vector potential of the field. We will work in the so-called symmetric gauge, so that

Ax = −B0

2
y, Ay =

B0

2
x, Az = 0.
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You can see that ∇× A = B = Bẑ. Now,

(p+ eA)2 =
p2

2m
+
e2A2

2m
− pxeBy

2m
+
pyeBx

2m
,

=
e~
2m

l · B = µBl · B = µBlzB.

So the orbital angular momentum couples to the magnetic field with the Bohr magneton. To il-
lustrate the general principle we are going to consider l = 0 and s = j = 1/2. We fill use more
pertrubation results, and you will start to see how perturbations can be really helpful in tackling
the harder problem. By hard problem, I mean that the Hamiltonian now includes a whole bunch of
angular momentum operators dotted to each other, and to the external field, and very few of these
commute. In general denote each angular momentum by jn, we have a massive Hamiltonian:

H =
∑
u

guju · B+
∑
<uv>

cuvju · jv

That’s why we need to simplify and use approximations.

6.4 The Zeeman and hyperfine Hamiltonian
Let’s work the case of 6Li, where I = 1 and S = J = 1/2. Our Hamiltonian is,

H = gsµBBJz − gIµNBIz + AHFJ · I,

=
gsµB − gIµN

2
(Jz + Iz)B +

gsµB + gIµN

2
(Jz − Iz)B + AHFJ · I,

= g−B(Jz − Iz) + g+B(Jz + Iz) + AHFJ · I.

Note that F is no longer a good operator, as it does not commute with the Jz−Iz terms. So this will
be a trickier problem, but not one that is too difficult to solve. We will consider it in two different
limits and then develop an exact solution.

6.4.1 Strong-field limit

Sometimes known as the Paschen-Back effect, let’s take g−B to be larger than AHF. Then the good
quantum numbers aremJ andmI . By “good quantum numbers” I mean the eigenvalues of a “good”
set of mutually commuting operators. Any such set will be a valid description of the basis, but the
“good” ones will be eigenstates of the largest energy scale in the problem. The first two terms of the
Hamiltonian can be computed, the state |mJ ,mI⟩ has energyE = g−B(mJ−mI)+g−B(mJ+mI).
But what of the third term? Recall that

J · I = JzIz +
1

2
J+I− +

1

2
J−I+.

We note that in this case, there is no degeneracy between states which are connected by the ladder
operators, since then differn in the value ofmJ −mI and g−B is large. Then it is easy to see that

⟨mJ ,mI | H |mJ ,mI⟩ = g−B(mJ −mI) + g+B(mJ +mI) + AHFmJIJ

+ AHF ⟨mJ ,mI | J+I− |mJ ,mI⟩ + AHF ⟨mJ ,mI | J−I+ |mJ ,mI⟩ ,
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but the last two terms are zero,
⟨mJ ,mI | H |mJ ,mI⟩ = g−B(mJ −mI) + g+B(mJ +mI) + AHFmJIJ ,

⟨mJ ,mI | H |mJ ,mI⟩ = gsµBBmJ − gIµNBmI + AHFmJIJ ,

⟨mJ ,mI | H |mJ ,mI⟩ ≈ gsµBBmJ + AHFmJIJ ,

where in the last step I ignored the small nuclear moment.

6.4.2 Weak-field limit

On the other hand let’s take AHF much larger than g−B. In this case F andmF are the good quan-
tum numbers, and the state |F,mF ⟩ has energy E = AHF/2 [F (F + 1)− J(J + 1)− I(I + 1)] +
g+B(mF ). The perturbation term is

⟨F,mF | H ′ |F,mF ⟩ = g−B ⟨F,mF | Jz − Iz |F,mF ⟩ .
How should we calculate such a thing? It turns out to be easiest to come back to our old friends
the raising and lowering operators. A note first about notation, we have a state |F,mF ⟩ , and in
general, this state can be written as a combination ofmJ andmI values, as

|F,mF ⟩ = α |J,mJ , I,mI⟩ + β |J,m′
J , I,m

′
I⟩ + γ |J,m′′

J , I,m
′′
I ⟩ + · · · ,

and the Clebsch-Gordon coefficients, instead of being Greek letters, are denoted
⟨J,mJ , I,mI |F,mF ⟩ .

Now take as an example the case of J = 3/2, and I = 1 (the 2p3/2 excited state of 6Li for example).
In this case we know F = 5/2, 3/2, 1/2. Let’s say we want to know about the F = 3/2 case. We
write all possible values ofmJ andmI for the maximummF state:∣∣∣∣ 32 , 32

⟩
= α

∣∣∣∣ 32 , 32 , 1, 0
⟩

+ β

∣∣∣∣ 32 , 12 , 1, 1
⟩
.

Then apply the F+ operator, knowing we will get zero,

F+

∣∣∣∣ 32 , 32
⟩

=
√
2α

∣∣∣∣ 32 , 32 , 1, 1
⟩

+
√
3β

∣∣∣∣ 32 , 32 , 1, 1
⟩

= 0.

Thus, we can solve for α and β, normalizing to get α =
√

3/5, β = −
√

2/5. There is some
sign ambiguity, but for expectation values it does not matter. From here we can read out that⟨

3
2
, 3
2

∣∣ Jz ∣∣ 32 , 32⟩ = 3/2(3/5) + 1/2(2/5) = 11/10. A useful fact is that ⟨F,mF | Jz |F,mF ⟩ is
always linearly proportional tomF , so that⟨

3

2
,−3

2

∣∣∣∣ Jz ∣∣∣∣ 32 ,−3

2

⟩
= −11/10,⟨

3

2
,
1

2

∣∣∣∣ Jz ∣∣∣∣ 32 , 12
⟩

= 11/30.

Putting it all together, that gives

⟨F,mF | H |F,mF ⟩ =
AHF

2
[F (F + 1)− J(J + 1)− I(I + 1)] + g+BmF+∑

mJ ,mI

⟨J,mJ , I,mI | |F,mF ⟩ g−B(mJ −mI).

4


